Enterprise Infrastructure Architecture

RL Information Consulting LLC
January 7, 2003

The Information contained in this presentation is based on Intellectual Capital provided by David Merrill and Copyrighted by Hitachi Data Systems in 1999
Agenda

- Lifecycle of Distributed Systems
- Enterprise Infrastructure Architecture Model
- How the Model Fits Enterprise Business Applications
Enterprise Infrastructure Architecture (EIA) Defined

- Structured methodology and life-cycle for distributed systems, client/server technologies
 1) Enterprise Planning, Infrastructure Model
 2) Systems (Enterprise & Process) Design
 3) Tool Selection
 4) Integration
 5) Deployment
 6) Support and Maintenance

- Process engineered independently from platform decisions and based on application and business needs
Enterprise View of Infrastructure & Architecture

IT Policy

Architecture

Infrastructure

Application “Projects”

People • Process • Technology
Organization • Integration

RL Information Consulting LLC - EIA

Slide - 4
Lifecycle of Distributed Systems

- Enterprise Planning
- Infrastructure Architecture
- Systems Design
- Tool Selection
- Integration
- Deployment
- Support/Maintenance
Infrastructure Architecture Model

Current Environment | Transition Plan | Target Environment

Business Functions | Architecture | Technology | Organization | Financial | Training

“Roadmap”
Infrastructure Architecture Model

Systems Foundation, that Requires:

- Structured Architecture Methodology
- Solid Business Practices
- Defined IT Processes
SolutionMethod™ Methodology

- SolutionMethod™ is a simple, certain method for undertaking systems integration in an open systems world
- Takes account of business, social and technical systems
- Exploits architecture-verified configurations

SolutionMethod™ Methodology

- Partnerships
 - Methods for change
 - Management
 - Implementation
 - Capturing vision
 - Evolving business strategy
 - Quantifying business benefits
 - Evolving technical strategy
 - Developing architecture
 - Engineering processes & Information
 - Preparing the organization
 - Selecting & verifying technology

Convergent Architecture
Convergent Architecture
Standards

NET, UNIX/LINUX, OSS
WebSphere, J2EE, XML, nTier

Foundation

Standards
Infrastructure Architecture Standards

HARDWARE
- IBM, HP, EMC, etc.
- Environmentals
- Reliability, Availability, Service-ability

SOFTWARE
- HP/UX
- UNIX, TCP/IP, OSI
- DB2, Oracle
- Websphere
- ODBC, SQL
- Versata
- XML
- Data Model
- Clover Leaf
- Language Standards
Hardware and Software

Hardware

Selection Criteria
- RAS
- Scalability
- Price/Performance
- Local experience/preference

OS & Middleware

Selection Criteria
- Comply to standards
- Hardware decisions
- Make vs. Buy
- Experience, preference
- Scaleable, Portable
EIA Model Summary

Applications
- Financial
- Manufacturing
- Engineering
- HR, Client Access
- 4GL Development

DBMS Selection
- Legacy Migration
- Standards Compliance
- Application Decision
- Price/Performance
- Data Model
EIA Management “Bricks”

Enterprise Management Disciplines, or “Bricks”

- Support the entire infrastructure
- Common OO data model to manage cooperative data within the enterprise
- Encapsulated functions of the model
- Provisions for bricks must begin early
- Omission will cause downstream problems
EIA Management “Bricks”

ITIL - IT Service Management Areas

- Security Management
- Problem Management
- Change Management
- Configuration Management
- Availability Management
- Financial Management
- Capacity Management
- ETC… Service Delivery, Service Support Areas
Physical and Logical Interfaces

with all other elements of the enterprise model

- Business Rules
- Applications Interface
- Software
- DBMS
- Hardware
- Standards & Methodology
EIA Management “Bricks”

Capacity Management
- Performance & Tuning
- Capacity Planning

Asset Management
- Software Licensing
- Asset Register

Data Management
- Backup and Recovery
- Archiving
- Device Management

Network Management
- Operations
- Capacity Management

Problem Management
- Fault Management
- Help Desk
- User Management

Security
- Data, Network
- Physical Assets
- Authentication

ITIL

ITSM

Application Management
- Database Management
- Application Administration

Other ITSM Areas ETC.
- Service Delivery
- Service Support
“To complete the enterprise model”
Influences on the Model

- Hardware Leapfrog Effect
- Time-to-Market
- Staff Availability & Expertise
- SW/Dominance

Business support
Services & delivery
Hardware
Operating System
Standards
Foundation
Design Methodologies

System qualities are:

• Potential for Change, Availability, Usability, Security, and Performance
• Perspectives of Enterprise Managers, Users, Service Providers, and Application Developers
• Systems Architecture
Solutions will vary based on requirements:
- Required Infrastructure characteristics
- Current Environment
- Budget
- Future IT Strategy
- Corporate Culture

Infrastructure solution components vary, based upon sliding scale:
- Hardware components
- Software components
- Service components
- Support components

Design Factors

Factors Scale
- Reliability
- Availability
- Scalability
- Serviceability
- Interoperability
- Manageability
- GUI Interface
- PC Compatibility
- Security
- Cost

Low Best
Business and IT Perspectives

- Business Perspectives
 - Enterprise Management
 - Trading partners
- Business system
- Employees
- Customers
- Enterprise management
- Information system
- Application developers
- Service Providers
- Technology Perspectives
- Users

RL Information Consulting LLC - EIA
Slide - 24
Perspectives and Qualities

Requirement Matrix

<table>
<thead>
<tr>
<th></th>
<th>Potential for Change</th>
<th>Availability</th>
<th>Usability</th>
<th>Performance</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Users</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Providers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Developers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL Information Consulting LLC - EIA
Tool and Technology Selection

• Architecture Selection based on Business Requirements

• Functional Tool Selection traceable to business and technical architectures

• Potential benefits from vendor partnerships for large, strategic projects
How to Model and Plan for Your Business

- When right-sizing and re-engineering, assume you need client/server and plan around multiple “n-tiers”
- Provide business and requirements-based planning
- Apply existing methods, tools, expertise to distributed systems
- Adopt a structured approach to assessment, planning, design, and implementation of client/server initiative
- Utilize outside vendor partnerships to leverage knowledge, and share risks/benefits
Conclusion

- Modeling methods can be used to design and plan client/server services and applications
- SolutionMethod™ (or similar) methodology can provide legitimacy to the infrastructure and architecture enabling risk reduction
- Modeling is especially useful in audits/reviews of existing architectures and operations

Take apart and critique existing model
Review brick by brick, modular approach